• Neufer, P. D. et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 22, 4–11 (2015).

    Article 
    CAS 

    Google Scholar 

  • Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article 
    CAS 

    Google Scholar 

  • Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The diversity outbred mouse population. Mamm. Genome 23, 713–718 (2012).

    Article 

    Google Scholar 

  • Kelly, S. A. & Pomp, D. Genetic determinants of voluntary exercise. Trends Genet. 29, 348–357 (2013).

    Article 
    CAS 

    Google Scholar 

  • Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    Article 
    CAS 

    Google Scholar 

  • Okamoto, T. et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am. J. Physiol. Endocrinol. Metab. 316, E956–E966 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hsu, Y. J. et al. Effect of intestinal microbiota on exercise performance in mice. J. Strength. Cond. Res. 29, 552–558 (2015).

    Article 

    Google Scholar 

  • Nay, K. et al. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 317, E158–E171 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article 

    Google Scholar 

  • Lahiri, S. et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med. 11, eaan566 (2019).

    Article 

    Google Scholar 

  • Almagro, B. J., Saenz-Lopez, P., Fierro-Suero, S. & Conde, C. Perceived performance, intrinsic motivation and adherence in athletes. Int. J. Environ. Res. Public Health 17, 9441 (2020).

    Article 

    Google Scholar 

  • Friend, D. M. et al. Basal ganglia dysfunction contributes to physical inactivity in obesity. Cell Metab. 25, 312–321 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fernandes, M. F. et al. Leptin suppresses the rewarding effects of running via STAT3 signaling in dopamine neurons. Cell Metab. 22, 741–749 (2015).

    Article 
    CAS 

    Google Scholar 

  • Tong, J. et al. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain 140, 2460–2474 (2017).

    Article 

    Google Scholar 

  • Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cavanaugh, D. J. et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl Acad. Sci. USA 106, 9075–9080 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Diepenbroek, C. et al. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G342–G352 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tellez, L. A. et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341, 800–802 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chang, F. Y. et al. Gut-inhabiting clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat. Microbiol. 6, 792–805 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Muller, C., Morales, P. & Reggio, P. H. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 11, 487 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dubreucq, S., Koehl, M., Abrous, D. N., Marsicano, G. & Chaouloff, F. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis. Exp. Neurol. 224, 106–113 (2010).

    Article 
    CAS 

    Google Scholar 

  • Cluny, N. L. et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br. J. Pharmacology 161, 629–642 (2010).

    Article 
    CAS 

    Google Scholar 

  • Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article 

    Google Scholar 

  • Teixeira, P. J., Carraca, E. V., Markland, D., Silva, M. N. & Ryan, R. M. Exercise, physical activity, and self-determination theory: a systematic review. Int. J. Behav. Nutr. Phys. 9, 78 (2012).

    Article 

    Google Scholar 

  • Fuss, J. et al. A runner’s high depends on cannabinoid receptors in mice. Proc. Natl Acad. Sci. USA 112, 13105–13108 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Su, Z., Alhadeff, A. L. & Betley, J. N. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 21, 2724–2736 (2017).

    Article 
    CAS 

    Google Scholar 

  • Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gut-brain pathways. Cell Metab. 33, 676–687 e675 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lin, Y. T. & Chen, J. C. Dorsal root ganglia isolation and primary culture to study neurotransmitter release. J. Vis. Exp. https://doi.org/10.3791/57569 (2018).

    Article 

    Google Scholar 

  • Loro, E. et al. Effect of interleukin-15 receptor alpha ablation on the metabolic responses to moderate exercise simulated by in vivo isometric muscle contractions. Front. Physiol. 10, 1439 (2019).

    Article 

    Google Scholar 

  • Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 16, 1126–1137 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, L., Liu, J., Harvey-White, J., Zimmer, A. & Kunos, G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc. Natl Acad. Sci. USA 100, 1393–1398 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • ودجت أحدث المقالات للصفحة الرئيسية تظهر على الصفحة الرئيسية فقط

    Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *